
On the Computation of Recursion in Relational Databases 263

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XV

On the Computation of
Recursion in

Relational Databases
Yangjun Chen

University of Winnipeg, Canada

ABSTRACT
A composite object represented as a directed graph is an important data structure
which requires efficient support in CAD/CAM, CASE, office systems, software
management, Web databases and document databases. It is cumbersome to handle such
an object in relational database systems when it involves recursive relationships. In
this chapter, we present a new encoding method to support the efficient computation
of recursion. In addition, we devise a linear time algorithm to identify a sequence of
reachable trees (w.r.t.) a directed acyclic graph (DAG), which covers all the edges of
the graph. Together with the new encoding method, this algorithm enables us to
compute recursion w.r.t. a DAG in time O(e), where e represents the number of edges
of the DAG. More importantly, this method is especially suitable for a relational
environment.

264 Chen

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

INTRODUCTION
It is a general opinion that relational database systems are inadequate for manipu-

lating composite objects which arise in novel applications such as Web and document
databases (Mendelzon, Mihaila & Milo, 1997; Abiteboul et al., 1997; Chen & Aberer, 1998,
1999), CAD/CAM, CASE, office systems and software management (Banerjee et al., 1988;
Teuhola, 1996). Especially when recursive relationships are involved, it is cumbersome
to handle them in a relational system. To mitigate this problem to some extent, many
methods have been proposed, such as join index (Valduriez & Borel, 1986) and clustering
of composition hierarchies (Haskin & Lorie, 1982), as well as the encoding scheme
(Teuhola, 1996).

In this chapter, we present a new encoding method to facilitate the computation of
recursive relationships of nodes in a DAG. In comparison with Teuhola’s, our method
is simple and space-economic. Specifically, the problem of Teuhola’s so-called signature
conflicts is removed.

BACKGROUND
A composite object can be generally represented as a directed graph. For example,

in a CAD database, a composite object corresponds to a complex design, which is
composed of several subdesigns (Banerjee et al., 1988). Often, subdesigns are shared by
more than one higher-level design, and a set of design hierarchies thus forms a directed
acyclic graph (DAG). As another example, the citation index of scientific literature,
recording reference relationships between authors, constructs a directed cyclic graph.
As a third example, we consider the traditional organization of a company, with a variable
number of manager-subordinate levels, which can be represented as a tree hierarchy. In
a relational system, composite objects must be fragmented across many relations,
requiring joins to gather all the parts. A typical approach to improving join efficiency is
to equip relations with hidden pointer fields for coupling the tuples to be joined (Carey
et al., 1990). Recently, a new method was proposed by Teuhola (1996), in which the
information of the ancestor path of each node is packed into a fix-length code, called the
signature. Then, the operation to find the transitive closure w.r.t. a directed graph can
be performed by identifying a series of signature intervals. No joins are needed. Using
Teuhola’s method, CPU time can be improved up to 93% for trees and 45% for DAGs in
comparison with a method which performs a SELECT command against each node, where
the relation to store edges is equipped with a clustering index on the parent nodes
(Teuhola, 1996).

In this chapter, we follow the method proposed in Teuhola (1996), but using a
different encoding approach to pack “ancestor paths.” For example, in a tree hierarchy,
we associate each node v with a pair of integers (D, E) such that if v’, another node
associated with (D’, E’), is a descendant of v, some arithmetical relationship between D
and D’ as well as E and E’ can be determined. Then, such relationships can be used to
find all descendants of a node and the recursive closure w.r.t. a tree can be computed very
efficiently. This method can be generalized to a DAG or a directed graph containing
cycles by decomposing a graph into a sequence of trees (forests), in which the approach
described above can be employed. As we will see later, a new method can be developed
based on the techniques mentioned above, by which recursion can be evaluated in O(e)

On the Computation of Recursion in Relational Databases 265

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

time, just as an algorithm using adjacency lists. The adjacency list is a common data
structure to store a graph in computational graph theory (see Mehlhon, 1984). However,
our method is especially suitable for the implementation in a relational environment. More
importantly, the proposed encoding scheme provides a new way to explore more efficient
graph algorithms to compute transitive closures.

TASK DEFINITION
We consider composite objects represented by a directed graph, where nodes stand

for objects and edges for parent-child relationships, stored in a binary relation. In many
applications, the transitive closure of a graph needs to be computed, which is defined
to be all ancestor-descendant pairs. A lot of research has been directed to this issue.
Among them, the semi-naive (Bancihon & Ramakrishnan, 1986) and the logarithmic
(Valduriez & Boral, 1986) are typical algorithmic solutions. Another main approach is the
materialization of the closure, either partially or completely (Agrawal & Jagadish, 1990).
Recently, the implementation of the transitive closure algorithms in a relational environ-
ment has received extensive attention, including performance and the adaptation of the
traditional algorithms (Abiteboul et al., 1990; Agrawal, Dar & Jagadish, 1990; Ioannidis,
Ramakrishnan & Winger, 1993; Dar & Ramakrishnan, 1994; Teuhola, 1996).

The method proposed in this chapter can be characterized as a partial materialization
method. Given a node, we want to compute all its descendants efficiently based on a
specialized data structure. The following is a typical structure to accommodate part-
subpart relationship (Cattell & Skeen, 1992):
• Part(Part-id, Part-rest),
• Connection(Parent-id, Child-id, Conn-rest),

where Parent-id and Child-id are both foreign keys, referring to Part-id. In order to speed
up the recursion evaluation, we’ll associate each node with a pair of integers which helps
to recognize the ancestor-descendant relationships.

In the rest of the chapter, the following three types of graphs will be discussed.
i) Tree hierarchy, in which the parent-child relationship is of one-to-many type, i.e.,

each node has at most one parent.
ii) Directed acyclic graph (DAG), which occurs when the relationship is of many-to-

many type, with the restriction that a part cannot be sub/superpart of itself (directly
or indirectly).

iii) Directed cyclic graph, which contains cycles.

Later we’ll use the term graph to refer to the directed graph, since we do not discuss
non-directed ones at all.

LABELLING A TREE STRUCTURE
In the method proposed in Teuhola (1996), each node v is associated with an interval

(l, h), where l and h are two signatures each consisting of a bit string. These bit strings
are constructed in such a way that if the interval associated with a descendant of v is (l’,

266 Chen

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

h’), then l � l’ and h � h’ hold. Although this method is incomparably superior to a trivial
method, it suffers from the follows disadvantages:
1) This method is space-consuming since signatures tend to be very long.
2) The size of signatures has to be pre-determined. Different applications may require

different signature lengths. This can be tuned only manually.
3) There may exist the so-called signature conflicts, i.e., two nodes may be assigned

the same signature.

In the following, we search for remedies for these three drawbacks. First, we discuss
a tree labeling method to demonstrate the main idea of the improvement in this section.
The discussion on general cases will occur later on.

Consider a tree T. By traversing T in preorder, each node v will obtain a number
pre(v) to record the order in which the nodes of the tree are visited. In the same way, by
traversing T in postorder, each node will get another number post(v). These two numbers
can be used to characterize the ancestor-descendant relationship as follows.

Proposition 1. Let v and v’ be two nodes of a tree T. Then, v’ is a descendant of v if pre(v’)
> pre(v) and post(v’) < post(v).

Proof. See Knuth (1973).

If v’ is a descendant of v, then we know that pre(v’) > pre(v) according to the preorder
search. Now we assume that post(v’) > post(v). Then, according to the postorder search,
either v’ is in some subtree on the right side of v, or v is in the subtree rooted at v’, which
contradicts the fact that v’ is a descendant of v. Therefore, post(v’) must be less than
post(v).

The following example helps for illustration.

Example 1
See the pairs associated with the nodes of the graph shown in Figure 1(a). The first

element of each pair is the preorder number of the corresponding node and the second
is the postorder number of it. Using such labels, the ancestor-descendant relationship
can be easily checked.

a

b g h

c e

f

7

10

8

3 4 5

1

(b)

a

b g h

c e

f

(3, 1)

(5, 2)

(4, 3)

(2, 4) (6, 5) (7, 6)

(1, 7)

(a)

Figure 1. Labeling a Tree

On the Computation of Recursion in Relational Databases 267

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For example, by checking the label associated with b against the label for f, we know
that b is an ancestor of f in terms of Proposition 1. We can also see that since the pairs
associated with g and c do not satisfy the condition given in Proposition 1, g must not
be an ancestor of c and vice versa.

According to this labeling strategy, the relational schema to handle recursion can
consist of only one relation of the following form:

Node(Node_id, label_pair, Node_rest),

where label_pair is used to accommodate the preorder number and the postorder number
of each node, denoted label_pair.preorder and label_pair.postorder, respectively. Then,
to retrieve the descendants of node x, we issue two queries. The first query is very simple
as shown below:

SELECT label_pair
FROM Node
WHERE Node_id = x

Let the label pair obtained by evaluating the above query be y. Then, the second
query will be of the following form:

SELECT *
FROM Node
WHERE label_pair.preorder > y.preorder

and label_pair.postorder < y.postorder

From the above discussion, we can see that the three drawbacks of Teuhola’s
method (Teuhola, 1996) mentioned above can be eliminated: 1) each node is associated
with only a pair of integers and therefore the space overhead is low; 2) the size of each
label pair remains the same for all applications; 3) there are no signature conflicts since
each label pair is different from the others.

In the following, we show two other important techniques to identify the sibling
relationship and the parent-child relationship.

For the first task, consider a new labeling method as shown in Figure 1(b). First we
assign 1 to the root; then during the breadth-first traversal, we number the children of
each node consecutively from x + 2, where x is the largest number assigned so far. We
call such a labeling method the sibling-code. Then, we can associate each parent node
with an interval [a, b] such that each child’s sibling-code s ± [a, b]. Therefore, two nodes
are siblings if their sibling-codes belong to the same interval.

To identify the parent-child relation, we associate each node with a level number.
The root has the level number 0. All the children of the root have the level number 1, and
so on. Then, if node x is the ancestor of y and at the same time l(x) = l(y) - 1 (l(x) stands
for the level number of x), then we know that x is the parent of y.

268 Chen

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

GENERALIZATION
Now we discuss how to treat the recursion w.r.t. a general structure: a DAG or a

graph containing cycles. First, we address the problem with DAGs. Then, the cyclic
graphs will be discussed.

Recursion W.R.T. DAGs
We want to apply the technique discussed above to a DAG. To this end, we define

the following concept (Shimon, 1979).

Definition 1. A subgraph G’(V, E’) of a finite DAG G(V, E) is called a branching if din(v)
� 1 for every v ± V (din(v) represents the in-degree of v).

For example, the graph shown in Figure 2(b) is a branching of the graph shown in
Figure 2(a).

Let each edge e ± E have a cost c(e). A branching G’(V, E’) is a called a maximal

branching if È
±E'e

ec)(is maximum. In addition, a tree appearing in a branching and rooted

at a node r is called a reachable-tree from r.
In the following, we will divide a DAG into a set of reachable trees. This method

shares the flavor of Teuhola’s (1996). But our decomposition strategy is quite different
from Teuhola’s. In his method, a DAG is decomposed into a set of reachable trees which
are separated from each other, i.e., there are no common nodes between any two reachable
trees, while in ours two reachable trees may have common nodes. The advantage of our
method can be seen in the following discussion.

Below we concentrate only on single-root graphs for simplicity. But the proposed
method can be easily extended to normal cases. We construct a sequence of reachable
trees for a DAG G with the single-root r0, which covers all the reachable edges from r0
in G. For our problem, we assume that each edge e in G is associated with a cost c(e) =
1. Given r0, we are interested in the maximal branching B in G, and the reachable tree from
r0 in B, denoted Tmax(G). First, we recognize Tmax(G) from G. Then, we remove Tmax(G) and
subsequently all isolated nodes from G, getting another graph G1. Next, for a leaf node
r1 in Tmax(G), we construct another reachable tree from r1 in G1: Tmax(G1) and remove Tmax(G1)
and all isolated nodes from G1. Next, for a node r2, which is a leaf node of Tmax(G) or Tmax(G1),
we construct a third reachable tree. We repeat this process until the remaining graph
becomes empty. It is therefore easy to see that all Tmax(Gi)’s can be obtained in O(k(n +

a

b d

c
e

(a)

a

b d

c
e

(b)

Figure 2. A DAG and One of its Brachings

On the Computation of Recursion in Relational Databases 269

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

e)) time by repeating graph search procedure k times, where n and e represent the number
of the nodes and the edges of the DAG, respectively, and k is the number of trees into
which G can be decomposed. However, this time complexity can be reduced to O(n + e)
by implementing an algorithm which computes such a sequence in a single-scan.

For a DAG G = (V, E), we represent the sequence of reachable trees Tmax(Gi) (i = 0,
1, ..., m; G0 = G) as follows:

Tmax(G0) = (V1, E1),
Tmax(G1) = (V2, E2),
Tmax(G2) = (V3, E3),
... ...
Tmax(Gm) = (Vm+1, Em+1),

where V1 stands for the set of nodes in G, Vi (i = 2, ..., m+1) for the set of nodes in G - E1
« E2 « ... « Ei-1, and m is the largest in-degree of the nodes of G.

In the following, we give a linear time algorithm to compute all Tmax(Gi)’s.
The idea is to construct all E1, E2, ... Em in a single scan. During the graph search we

compute, for each edge e being scanned, the i satisfying e ± Ei. Such i can be defined
to be the smallest such that if e is put in Ei, the condition: each node in any Ej (j = 1, ...,
i) is visited only once, is not violated, where Ei denotes the edge sets constructed so far.
In the algorithm, we always choose an unvisited edge e that is adjacent to edge e’ Î Ei
with the largest i. In the algorithm, we associate each node v with a label l(v): l(v) = i
indicates that v has been reached by an edge of the forest Tmax(Gi-1) = (Vi, Ei). In the
following algorithm, we assume that the nodes are numbered in terms of the depth-first
search.

Algorithm find-forest
input: G = (V, E)
output: E1 , E2, ..., Em

begin
E1 := E2 := ... := Em := ©;
Mark all nodes v ± V and all edges e ± E “unvisited”;
l(v) := 0 for all v ± V;
while there exist “unvisited” nodes do

begin
choose an “unvisited” node v ± V with the largest l and the smallest
“depth-first” number;
for each “unvisited” edge e incident to v do

begin
Let u be the other end node of e (� v);

* El(u)+1 := El(u)+1 « {e};
** l(u) := l(u) + 1;
*** if l(v) < l(u) then l(v) := l(u) -1;

Mark e “visited”;
end

270 Chen

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Mark x “visited”;
end

end

For example, by applying the above algorithm to the graph shown in Figure 2(a), we
will obtain the edges of three reachable trees shown in Figure 3(b). In the Appendix, we
will trace the execution of the algorithm against Figure 3(a) for a better understanding.

In the above algorithm, each edge is visited exactly once. Therefore, the time
complexity of the algorithm is bounded by O(n + e). In the following, we prove a theorem
to establish the correctness of the algorithm.

Proposition 2. Applying Algorithm “find-forest” to a DAG G, a sequence of reachable
trees w.r.t. G will be found, which covers all of its edges.

Proof. First, we note that by the algorithm, each edge will be visited exactly once and put
in some Ei. Therefore, the union of all Eis will contains all edges of G. To prove the
theorem, we need now to specify that in every Ei, except the root nodes of Ei, each
node can be reached along only one path, or say, visited exactly one time w.r.t. Ei.
Pay attention to the lines marked with * and **. If a node u is visited several times
along different edges, such edges will be put in different Eis. Therefore, in each Ei,
u can be visited only once. By the line marked with ***, if an edge (v, u) is put in
some Ei, then an unvisited edge reaching v afterwards will be put in Ei or Ei+1. If in
Ei there is no edge reaching v up to now (in this case, l(v) < l(u) holds), the label of
v will be changed to i - 1. Then, if afterwards an unvisited edge reaches v, it will be
put in Ei. Otherwise, l(v) = l(u) and there must already be an edge in Ei reaching v.
Thus, if afterwards an unvisited edge reaches v, it will be put in Ei+1. In this way,
in Ei, v can be visited only once, which completes the theorem proof.

Now we can label each Ei in the same way as discussed in the previous section. (A
forest can be regarded as a tree with a virtual root which has a virtual edge linking each
tree root of the forest.) In addition, we notice that a node may appear in several Eis. For
example, in Figure 3(b), node 6 appears in E1 and E2 while node 4 occurs in all the three
reachable trees. Then, after labeling each Ei, each node v will get a pair sequence of the

form: (
1i

pre ,
1i

post). (
2i

pre ,
2i

post). … (
jipre ,

jipost), where for each ik ±{1, ..., m} (m

1

2 6 7

3 4

5

1

2 6 7

3 4

5

6

4

7

4

(a) (b)

G : E 1 : E 2 : E 3 :

Figure 3. DAG and its Node-Disjunct Maximal Trees

On the Computation of Recursion in Relational Databases 271

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

is the in-degree of v) and (
ki

pre ,
ki

post) stands for the preorder number and postorder

number of v w.r.t.
ki

E . In the subsequent discussion, we also say that a label belongs to
some Ei, referring to the fact that this pair is calculated in terms of Ei. In terms of such a
data structure, we give a naive algorithm below.

'global := ©;
'local := ©;
S := {x}; (* The descendants of x will be searched. *)
function recursion(S)
begin

for each x ± S do {
let p1.p2. ... pm be the pair sequence associated with x;
for i = m to 1 do {

* let ' be the set of descendants of x w.r.t. Ei (evaluated using pi);
** for each y ± ', remove the pair belonging to Ei from the pair sequence

associated with y;
'local := 'local « ';}}

'local := 'local - 'global;
'global := 'global « 'local;
call recursion('local);
end

In the above algorithm, pay attention to the line marked with *, by which all the
descendants of x will be evaluated in Ei, using pi. Since these descendants may appear
also in other Ejs, they should be used for the further computation. But the pair belonging
to Ei has to be eliminated from the pair sequences associated with these nodes to avoid
the repeated access to the edges in Ei, which is done by the line marked with **.

The above algorithm suffers, however, from redundancy as discussed.
The graph shown in Figure 4(a) can be decomposed into two reachable trees as

shown in Figure 4(b). Applying recursion(7) to this graph, the descendant set evaluated
in the first for loop is {4, 5}. In the second for loop, the descendants of nodes 4 and 5
will be computed, which are s1 = {5, 6} (the descendants of node 4) and s2 = {6} (the
descendants of node 5), respectively. Obviously, s2 is completely covered by s1.
Therefore, the work of evaluating s2 can be saved. To this end, we associate each Ei with

1

2 7

3 4

5

1

2
7

3 4

5

7

4

5

6 6
(a)

(b)

Figure 4. Illustration of Redundancy of Recursion (S)

272 Chen

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a bit string of size n, denoted Bi. If some node j is a descendant evaluated w.r.t. Ei, the
jth bit of Bi will be set to 1, i.e., Bi[j] = 1. If the descendants of a node k w.r.t. Ei will be
evaluated, we first check Bi[k] to see whether it is equal to 1. If so, the corresponding
computation will not be made. Another problem is that if s2 is evaluated first, the
redundant work cannot be avoided even though the checking is performed. Thus, the
order of the nodes whose descendants will be evaluated is important. With respect to
an Ei, the nodes with smaller preorder numbers will be treated earlier than those with a
larger preorder number. This is because a node with a larger preorder number may be a
descendant of a node with a smaller one, but not vice versa. In order to sort the nodes
in this way, we have to change the control method of the above algorithm. Assume that
each node v is associated with a pair sequence of the form: p1.p2. ... pm, where m is the
largest in-degree of the graph. If v does not appear in Ei, pi will be of the form: (_, _) and
will be ignored by sorting. The nodes, whose descendants w.r.t. Ei are going to be
evaluated, will first be sorted in terms of pi. Then, the descendants of these nodes w.r.t.
Ei will be computed. In a second loop, the nodes will be sorted again in terms of pi-1. This
process repeats until all pis are handled. Below is the corresponding algorithm with the
checking mechanism used.

'global := ©;
'local := ©;
S := {x}; (* The descendants of x will be searched. *)
let p1.p2. ... pm be the pair sequence associated with each node of the graph;
for i = 1 to m do Bi = 0;
function refined-recursion(S)
begin

for i = m to 1 do {
sort S in terms of pis;
let the sorted S be {v1, ..., vk};
for j = 1 to k do {
if Bi[vj] = 0 then ' := the set of descendants of vj w.r.t. Ei (evaluated using pi);
for each vj ± ' do {Bi[vj] := 1}
'local := 'local « ';}}

'local := 'local - 'global;
'global := 'global « 'local;
call refined-recursion('local);

end

Note that we take only O(1) time to check a bit in the bit string. For each newly
evaluated node set (each time stored in 'local in the above algorithm), sorting operations
will be performed. But each node v in 'local can take part in the sorting only d times, where
d represents the in-degree of v, since for each node v only d pairs in the pair sequence
associated with it is not of the form: (_, _). Assume that each time only 'ij from 'i (= 'local)
participates in the sorting. Then, the total cost for sorting is:

||log| ij
i j

ij| 'º'ÈÈ � e× logn.

On the Computation of Recursion in Relational Databases 273

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Since each edge is visited at most once, the traversal of the graph needs only O(e)
time. Therefore, the time complexity of the algorithm is bounded by O(e×logn), a little bit
less than the time required by an algorithm using an adjacency list. More importantly,
this algorithm is quite suitable for a relational environment. Furthermore, we can store
the data in a special way to support the sorting operation so that no extra time is required.
For example, we can define two simple relations to accommodate the graph and its pair
sequences as follows:

node(Node_id, Node_rest),
reachable_forest(E_num, label_pair, Node_id).

The first relation stores all the nodes of the graph. The second relation stores all
the reachable trees, in which “E_num” is for the identifiers of the reachable trees. If for
each of them the label pairs are stored in the increasing order of their preorder numbers,
the sorting operations in the algorithm refined-recursion() can be removed. Then, the
time complexity of the algorithm can be reduced to O(e). This can be done as follows.
Whenever some Ei is considered during the execution, we take the tuples with E_num =
i from the relation “reachable_forest.” Then, we scan these tuples and check, for each
tuple, to see whether Bi[node_id] = 1. If it is the case, the corresponding label pair will
be put in a list (a temporary data structure) sequentially. Obviously, the list constructed
in this way is sorted into the in-creasing order of the preorder numbers w.r.t. Ei.

Recursion W.R.T. Cyclic Graphs
Based on the method discussed in the previous section, we can easily develop an

algorithm to compute recursion for cyclic graphs. We can use Tarjan’s algorithm for
identifying strong connected components (SCCs) to find cycles of a cyclic graph (Tarjan,
1973) (which needs only O(n + e) time). Then, we think of each SCC as a single node (i.e.,
condense each SCC to a node). The resulting graph is a DAG. Applying the algorithm
find_forest() to this DAG, we will get a set of forests. For each forest, we can associate
each node with a pair as above. Obviously, all nodes in an SCC will be assigned the same
pair (or the same pair sequence). For this reason, the method for evaluating the recursion
at some node x should be changed. For example, if a graph becomes a tree after
condensing each SCC to a node, the select-from-where statements like those given in the
third section (against this graph) can be modified as follows. The first query is quite the
same as that previously shown:

SELECT label_pair
FROM Node
WHERE Node_id = x

But the second is changed slightly:

SELECT *
FROM Node
WHERE label_pair.preorder � y.preorder

and label_pair.postorder � y.postorder

274 Chen

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

By the second query, the nodes in the same SCC as x will be regarded as the
descendants of x.

For general cases, the method for checking ancestor-descendant relationship
applies. No extra complexity is caused. Since Tarjan’s algorithm runs in O(n + e) time,
computing recursion for a cyclic graph needs only O(e) time.

CONCLUSION
In this chapter, a new labeling technique has been proposed. Using this technique,

the recursion w.r.t., a tree hierarchy can be evaluated very efficiently. In addition, we have
introduced a new algorithm for computing reachable trees, which requires only linear
time. Together with the labeling technique, this method enables us to develop an efficient
algorithm to compute recursion for directed graphs in O(e) time, where e represents the
number of the edges of the DAG. More importantly, this method is especially suitable
for relational databases and much better than the existing methods.

REFERENCES
Abiteboul, S., Cluet, S., Christophides, V., Milo, T., Moerkotte, G. & Simon, J. (1997).

Quering documents in object databases. International Journal of Digital Librar-
ies, 1(1), 5-19.

Agrawal, A., Dar, S. & Jagadish, H.V. (1990). Direct transitive closure algorithms: Design
and performance evaluation. ACM Transactions of Database Systems, 15(3), 427-
458.

Agrawal, R. & Jagadish, H.V. (1989). Materialization and incremental update of path
information. Proceedings of the 5th International Conference on Data Engineer-
ing, Los Angeles, CA, USA, 374-383.

Agarawal, R. & Jagadish, H.V. (1990). Hybrid transitive closure algorithms. Proceedings
of the 16th International VLDB Conference, Brisbane, Australia, 326-334.

Bancihon, F. & Ramakrishnan, R. (1986). An amateur’s introduction to recursive query
processing strategies. Proceedings of the ACM SIGMOD Conference, Washing-
ton, DC, USA, 16-52.

Banerjee, J., Kim, W., Kim, S. & Garza, J.F. (1988). Clustering a DAG for CAD databases.
IEEE Transactions on Knowledge and Data Engineering, 14(11), 1684-1699.

Carey, M. et al. (1990). An incremental join attachment for Starburst. Proceedings of the
16th VLDB Conference, Brisbane, Australia, 662-673.

Cattell, R.G.G. & Skeen, J. (1992). Object operations benchmark. ACM Transactions on
Database Systems, 17(1), 1-31.

Chen, Y. & Aberer, K. (1998). Layered index structures in document database systems.
Proceedings of the 7th International Conference on Information and Knowledge
Management (CIKM), Bethesda, MD, USA, 406-413.

Chen, Y. & Aberer, K. (1999). Combining pat-trees and signature files for query evalu-
ation in document databases. Proceedings of the 10th International DEXA
Conference on Database and Expert Systems Application, Florence, Italy, Septem-
ber. City: Springer Verlag, 473-484.

On the Computation of Recursion in Relational Databases 275

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Dar. S. & Ramarkrishnan, R. (1994). A performance study of transitive closure algorithm.
Proceedings of the SIGMOD International Conference, Minneapolis, MN, USA,
454-465.

Haskin, R.L. & Lorie, R.A. (1982). On extending the functions of a relational database
system. Proceedings of the ACM SIGMOD Conference, Orlando, FL, USA, 207-212.

Ioannidis, Y.E., Ramakrishnan R. & Winger, L. (1993). Transitive closure algorithms
based on depth-first search. ACM Transactions on Database Systems, 18(3), 512-
576.

Jagadish, H.V. (1990). A compression technique to materialize transitive closure. ACM
Transactions on Database Systems, 15(4), 558-598.

Knuth, D.E. (1973). The Art of Computer Programming: Sorting and Searching, London:
Addison-Wesley.

Mehlhorn, K. (1984). Graph Algorithms and NP-Completeness: Data Structure and
Algorithm 2. Berlin: Springer-Verlag.

Mendelzon, A.O., Mihaila, G.A. & Milo, T. (1997). Querying the World Wide Web.
International Journal of Digital Libraries, 1(1), 54-67.

Shimon. E. (1979). Graph Algorithms. City, MD: Computer Science Press.
Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM Journal of

Computing, 1(2), 146-140.
Teuhola, J. (1996). Path signatures: A way to speed up recursion in relational databases.

IEEE Transactions on Knowledge and Data Engineering, 8(3), 446-454.
Valduriez, P. & Boral, H. (1986). Evaluation of recursive queries using join indices.

Proceedings of the 1st Workshop on Expert Database Systems, Charleston, SC,
USA, 197-208.

276 Chen

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

APPENDIX
In this appendix, we trace the algorithm find-reachable-tree against the tree shown

in Figure 3(a).
See Figure 5. At the beginning, every r(v) is set to 0. After the first loop, the l-value

of node 1 remains 0. But the l-values of 2, 6 and 7 are changed to 1. Moreover, node 1 and
edge (1, 2), (1, 6) and (1, 7) are marked with “v” to indicate that they have been visited.
In addition, part of E1 has been generated. The rest of the steps are listed in Figures 6,
7 and 8.

1

2 6 7

3 4

5

x

1, v

1, v 1 1

1
1

0

E 1 = {(1, 2), (1, 6), (1, 7),
v

v v

v v

(2, 3), (2, 4)} 1

2 6 7

3 4

5
x

1, v

1, v 1 1

1

0

E 1 = {(1, 2), (1, 6), (1, 7),
v

v v

v v

(2, 3), (2, 4)}

1, v

1

2 6 7

3 4

5
x

1, v

1, v

1 1

1

E 1 = {(1, 2), (1, 6), (1, 7),
v

v v

v v

(2, 3), (2, 4), (4, 5)}

1, v
v

1

2 6 7

3 4

5

x

1, v

1, v

1 1

E 1 = {(1, 2), (1, 6), (1, 7),
v

v v

v v

(2, 3), (2, 4), (4, 5)}

1, v
v

1, v

1, v 1, v

1

2 6 7

3 4

5

x 0

0 0 0

0
0

0

1

2 6 7

3 4

5

x

0, v

1 1 1

0
0

0

E1 = {(1, 2), (1, 6), (1, 7)}
v

v v

Figure 5. The First Execution Step of Find-Node-Disjunct-Forest

Figure 6. The Second and Third Execution Step of Find-Node-Disjunct-Forest

Figure 7. The Fourth and Fifth Execution Step of Find-Node-Disjunct-Forest

On the Computation of Recursion in Relational Databases 277

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1

2 6 7

3 4

5

x

1, v

1, v

1

E1 = {(1, 2), (1, 6), (1, 7),
v

v
v

v v

(2, 3), (2, 4), (4, 5)}

1, v

v
2, v

1, v 1, v

v
E2 = {(6, 4)}

1

2 6 7

3 4

5

1, v

1, v

2, v

E1 = {(1, 2), (1, 6), (1, 7),
v

v
v

v v

(2, 3), (2, 4), (4, 5)}

1, v

v
3, v

1, v 1, v

v

E2 = {(6, 4)}
v

E3 = {(7, 4)}

Figure 8. The Sixth and Seventh Execution Step of Find-Node-Disjunct-Forest

